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Abstract: A digital signature scheme offers a cryptographic analogue of handwritten signatures that, 
in fact, provides much stronger security guarantees. Digital signatures serve as a powerful tool and 
are now accepted as legally binding in many countries; they can be used for certifying contracts or 
notarizing documents, for authentication of individuals or corporations, and as components of more 
complex protocols. Digital signatures also enable the secure distribution and transmission of public 
keys and thus, in a very real sense, serve as the foundation for all of public-key cryptography.[1] 
The paper introduces the representative examples of digital signature schemes: Lamport one-time 
digital signature, Batch signature schema and N-ary tree schema. Each schema with detailed 
mathematical explanations and analysis of its advantages and defects are presented below.  

1. Introduction 
Digital Signature is a device which helps you to verify the message you receive is exactly from 

the one you want to hear from and the message itself has not been changed by someone else. In other 
words, digital signature helps secure the message’s authentication and integrity; thus, make the exact 
message convey between two exact people. Its characteristics make it especially useful in business 
field and during war time. 

The signer - the sender - first need to use an algorithm to generate a private key and a matching 
public key. Then it should keep the private key to their own, but can make the public key entire 
public. When uses it to sign messages, the first need to hash the original message according to the 
selected scheme, and then sign that message with the private key. The versifier - the receiver - needs 
to use the matching public key to later verify. And since the public key are made public, actually 
everyone can verify the message, but with the public key no one can sign any new messages. 

2. Lamport one-time digital signature  
One-time signature schema, a kind of digital signature schemas, is used to sign at most one 

message; otherwise the signature can be forged [2]. One of the advantages is that the one-time 
signature generation and verification are very efficient and it is useful for chip cards, where low 
computation complexity is required. Lamport first invented a one-time digital signature schema 
based on one-way functions.[3] The Lamport One-Time Signature Schema (LOTSS) is a signature 
schema in which the public key can only be used to sign a single message. The security of the 
LOTSS is based on cryptographic hash functions. Any secure hash function can be used, which 
makes this signature schema very adjustable. If a hash function becomes insecure it can easily be 
exchanged by another secure hash function.[4] In this section, we briefly review the Lamport 
one-time digital signature, which includes three attempts with three algorithms: key generation, 
signature and verification. 

2.1 Lamport one-time digital signature first attempt 
2.1.1 Key generation 

Using OWF, denote f. 
Message=m [n bits], SK = (x1, x2...xn), PK(f(x1), f(x2) ...f(xn)). 
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2.1.2 Signature 
If m[i] = 1, xi will be part of S. Else if m[i] = 0, xi will not be part of S. 
The signature would contain the number of 1s in the message, and define it as length l. 
The time for signing would be the speed your computer identify 0 and 1 in the message and pick 

out corresponding xn in SK. 

2.1.3 Verification 
Given m, see which of the random numbers should be part of S. Check that those random 

numbers are correct by apply f and comparing with the value in PK. 
Define the time to compute a one-way hash function to be t_f. The time for verifying is l*t_f. 

2.2 Lamport one-time digital signature second attempt 
2.2.1 Key generation 

Using OWF, denote f. 
Message=m [n bits], SK= (x1, x2...xn),(x1’, x2’...xn’)[2n bits], PK(f(x1), f(x2) ...f(xn)), (f(x1’), 

f(x2’) ...f(xn’)) [2n bits] 

2.2.2 Signature 
If m[i] = 1, xi' will be part of S. Else if m[i] = 0, xi will be part of S. 
The signature would be the same length as the message, and define it as length l. 
The time for signing would be the speed your computer identify 0 and 1 in the message and pick 

out corresponding xn or xn’ in SK. 

2.2.3 Verification 
Given m, see which of the random numbers should be part of S. Check that those random 

numbers are correct by apply f and comparing with the value in PK. 
Define the time to compute a one-way hash function to be t_f. The time for verifying is l*t_f. 

2.3 Lamport one-time digital signature improved attempt 
2.3.1 Key generation 

Using OWF, denote f. 
Message=m [n bits], SK= (x1, x2...xn)[n+logn(base 2) +1 bits], PK(f(x1), 

f(x2) ...f(xn))[n+logn(base 2) +1 bit] 

2.3.2 Signature 
m || Z(m), If m[i] = 1, xi will be part of S. Else if m[i] = 0, xi will not be part of S. 
The length of the signature equals the number of 1s in m||Z(m), and define it as l. 
The time for signing would be the speed your computer identify 0 and 1 in m||Z(m) and pick out 

corresponding xn in SK. 

2.3.3 Verification 
Given m, see which of the random numbers should be part of S. Check that those random 

numbers are correct by apply f and comparing with the value in PK. 
Define the time to compute a one-way hash function to be t_f. The time for verifying is l*t_f. 

2.4 Lamport one-time digital signature schema conclusion 
In the above case, 'The first Attempt' is the simplest scheme, but it is insecure since any one can 

sign another message with a known signature; the second one is secure, but it can be only used once, 
and the key would be too long; the third one is most recommended in this case, for it is not only safe, 
but also comparably short, but it also can only be used once. To sum up, the whole case is not ideal 
and efficient enough. 
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3. Batch signature schema 
The concept of batch signing multiple digital signatures is to find a method by which multiple 

digital signatures can be signed simultaneously in a lower time complexity than separately signing 
all the signatures. 

In the below case, define the length of S to be l, and since the verifying time of S is comparably 
small to the hashing process, we just ignore it in the following calculation. And we define the time 
used to calculate a hash function as t_h, the length of the hash function as l_h. 

3.1 Batch signature first attempt 
3.1.1 Key generation 

Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[n bits each], SK= (x1, x2...xn) PK(f(x1), f(x2) ...f(xn)). 

3.1.2 Signature 
h (m1 || m2 || ........|| m_k), signature on m1 = S, (m2, m3, ...... m_k) = S1, signature on m2 = S, 

(m1, m3, ...... m_k) = S2... 
The length of each signature would be (k-1)m+l. 
The time for signing would be 1*t_h. 

3.1.3 Verification 
Given m1 and S1, recover all messages. Compute h (m1, m2, .... m_k), S is part of S1. Verify that 

S is indeed a signature on h (m1, m2, .... m_k). 
The time for verifying is 1*t_h. 

3.2 Batch signature second attempt 
3.2.1 Key generation 

Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[n bits each], SK= (x1, x2...xn), PK(f(x1), f(x2) ...f(xn)). 

3.2.2 Signature 
Sign: H = h(H1, H2), H1 = h(m1 || m2 || ........|| m_k/2), H2 = h(mk/2+1 || | ........|| m_k)... 

Signature on m1 = S, (m2, m3, ...... m_k/2) , H2 = S1 signature on m2 = S, (m1, m3, ...... m_k/2) , 
H2 = S2... 

The length of each signature would be l+(k/2-1)m+l_h. 
The time for signing would be 3*t_h. 

3.2.3 Verification 
Given m1 and S1, recover the first half messages. Compute H1 = h (m1 || m2 || ........|| m_k/2). 

Then compute H = h (H1, H2). Verify that S is indeed a signature on H = h (H1, H2). 
The time for verifying is 2*t_h. 

3.3 Batch signature improved attempt 
3.3.1 Key generation 

Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[m bits each], SK= (x1, x2...xn), PK(f(x1), f(x2) ...f(xn)). 

3.3.2 Signature 
H=h(H1,H2...H_n), H1 = h(m1||m2||...m-k/n), H2 = h(mk/n+1||...m-k*2/n) ...Hn, signature on m1 

= S, (m2, m3, ...... m_k/n), H2,H3...Hn, ... ,signature on mk = S, H1,H2....Hn-1, (m-k(n-1)/n+1,.... 
m-k/n-1). 

The length of each signature would be l+(n-1)l_h+(k/n-1) m. 
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The time for signing would be (n+1)*t_h. 

3.3.3 Verification 
Given m1 and S1, recover the first 1/n part of the messages. Compute H1 = h (m1||m2||...m-k/n). 

Then compute H=h (H1, H2...H_n). Verify that S is indeed a signature on H = h (H1, H2). 
The time for verifying is 2*t_h. 

3.4 Batch signature schema conclusion 
In the above case, all of the attempts are secure. However, the second and the third ones are more 

preferable due to their shorter signature on each message. The second and the third one is essentially 
based on the same idea, but the third one divides all of the messages into more parts which can make 
the signature much shorter. 

4. N–ary tree schema 
In this case define the length of S to be l again, and since the verifying time of S is comparably 

small to the hashing process, we just ignore it in the following calculation. And we define the time 
used to calculate a hash function as t_h, the length of the hash function as l_h. 

4.1 Binary trees 
4.1.1 Key generation 

Assume that k is a power of 2 = 2^m. 
Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[m bits each], SK= (x1, x2...xn)[l_h bits], PK(f(x1), f(x2) ...f(xn))[l_h bits]. 

4.1.2 Signature 
The length of the signature would be m + l_h*logk+l. 
The time for signing would be (k + k/2+k/4+...+1)*t_h. 

4.1.3 Verification 
Follow the trees and finally compute H1k = h (H1k/2, Hk/2k). Verify that S is indeed a signature 

on H1k = h (H1k/2, Hk/2k). 
The time for verifying is (logk+1)*t_h. 

4.2 3-ary trees  
4.2.1 Key generation 

Assume that k is a power of 3 = 3^m. 
Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[m bits each], SK= (x1, x2...xn)[l_h bits], PK(f(x1), f(x2) ...f(xn))[l_h bits]. 

4.2.2 Signature 
The length of the signature would be m + l_h*2*logk(base 3) +l. 
The time for signing would be (k + k/3+k/9+...+1)*t_h. 

4.2.3 Verification 
Follow the trees and finally compute H1k = h (H1k/3, Hk/3 2k/3, H2k/3 k). Verify that S is 

indeed a signature on H1k = h (H1k/3, Hk/3 2k/3, H2k/3 k). 
The time for verifying is t_h*(logk+1). 

4.3 5-ary trees 
4.3.1 Key generation 

Assume that k is a power of 5 = 5^m. 
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Using OWF and Collision-Resistant hash function, denote f and h. 
Message=m, m2...m_k[m bits each], SK= (x1, x2...xn)[l_h bits], PK(f(x1), f(x2) ...f(xn))[l_h bits]. 

4.3.2 Signature 
The length of the signature would be m+l_h*4*logk(base 5) +l. 
The time for signing would be (k+k/5+k/25+...+1)*t_h. 

4.3.3 Verification 
Follow the trees and finally compute H1k = h (H1k/5, Hk/5 2k/5, H2k/5 3k/5, H3k/5 4k/5, H4k/5 

k). Verify that S is indeed a signature on H1k = h (H1k/5, Hk/5 2k/5, H2k/5 3k/5, H3k/5 4k/5, H4k/5 
k). 

The time for verifying is t_h*(logk+1) 
Table1: The time for verifying 

 Binary trees 3-ary trees 5-nary trees 
Signing time (k+k/2+k/4+...+1) *t_h (k+k/3+k/9+...+1) *t_h (k+k/5+k/25+...+1) *t_h 
Verifying time t_h*(logk+1) t_h*(logk+1) t_h*(logk+1) 

 

4.4 N-ary trees schema conclusion 
From the Table1 we can know that for the schemes in this category, the more messages you 

decide to divide each time, the faster you are able to sign and verify the whole bunch of messages. 

5. Conclusion 
We have proposed the generalized Lamport one-time signature schema which saves storage space, 

and batch signature with n-ary trees signature. It is summarized that each schema with detailed 
mathematical explanations and analysis of its advantages and defects. We expect that the attempted 
and improved schemas can be used to build more operative signature schemas. 

References 
[1] Jonathan Katz, Digital signatures: Backgroung and definations, 10.1007/978-0-038-27712-7_1 
[2] M. Bellare, S. Micali, How to sign given any trapdoor function, Journal of 
Cryptology-Crypto'92, LNCS 740 (1993) 1-14 
[3] Ming-Hsin Chang, Yi-Shiung Yeh, Improving Lamport one-time signature schema, Institute of 
Computer Science and Information Engineer 
[4] Georg Becker, Merkle Signature Schemas, Merkle Trees and their Cryptanalysis, Seminararbeit 
Ruhr-University Bochum 

 

165


	1. Introduction
	2. Lamport one-time digital signature
	3. Batch signature schema
	4. N–ary tree schema
	5. Conclusion
	References



